Derived brackets and sh Leibniz algebras

نویسنده

  • K. UCHINO
چکیده

We will give a generalized framework of derived bracket construction. It will be shown that a deformation differential provides a strong homotopy (sh) Leibniz algebra structure by derived bracket construction. A relationship between the three concepts, homotopy algebra theory, deformation theory and derived bracket construction, will be discussed. We will prove that the derived bracket construction is a map from the equivalence classes of deformation theory to the one of sh Leibniz algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Leibniz Algebras and Derived Brackets

We will discuss a bar/coalgebra construction of strong homotopy Leibniz algebras. We will give a generalized framework of derived bracket construction. We will prove that a deformation derivation of differential graded Leibniz algebra induces a strong homotopy Leibniz algebra by derived bracket method.

متن کامل

Homotopy Leibniz algebras and derived brackets ( version 2 )

We will give a generalized framework of derived bracket construction. The derived bracket construction provides a method of constructing homotopies. We will prove that a deformation derivation of dg Leibniz algebra (or called dg Loday algebra) induces a strong homotopy Leibniz algebra by the derived bracket method.

متن کامل

Higher Derived Brackets and Deformation Theory

The existing constructions of derived Lie and sh-Lie brackets involve multilinear maps that are used to define higher order differential operators. In this paper, we prove the equivalence of three different definitions of higher order operators. We then introduce a unifying theme for building derived brackets and show that two prevalent derived Lie bracket constructions are equivalent. Two basi...

متن کامل

m at h . D G ] 1 3 A ug 2 00 5 1 DYNAMICAL SYSTEMS ON LEIBNIZ ALGEBROIDS

In this paper we study the differential systems on Leibniz algebroids. We introduce a class of almost metriplectic manifolds as a special case of Leibniz manifolds. Also, the notion of almost metriplectic algebroid is introduced. These types of algebroids are used in the presentation of associated differential systems. We give some interesting examples of differential systems on algebroids and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009